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Why Muons?

Leptons are the ideal probes of short-distance physics:

All the energy Is stored in the colliding partons
No energy “waste” due to parton distribution functions
High-energy physics probed with much smaller collider energy
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Letter of Interest: Muon Collider Physics Potential | Nk
D. BurTAaZZO, R. CAPEDEVILLA, M. CHIESA, A. COSTANTINI, D. CURTIN, R. FRANCESCHINI,
T. HAN, B. HEINEMANN, C. HELSENS, Y. KAHN, G. KrNJAIC, I. Low, Z. LiU,
F. MaLroni, B. MELE, F. MELONI, M. MORETTI, G. ORTONA, F. PICCININI, M. PIERINI,
R. RATrTAZZI, M. SELVAGGI, M. Vos, L.T. WANG, A. WULZER, M. ZANETTI, J. ZURITA

On behalf of the forming muon collider international collaboration [1]

We describe the plan for muon collider physics studies in order to provide inputs to the Snowmass
process. The goal is a first assessment of the muon collider physics potential. The target
accelerator design center of mass energies are 3 and 10 TeV or more [2]. Our study will consider
energies Foy = 3,10, 14, and the more speculative Ecy = 30 TeV, with reference integrated
luminosities £ = (Ecy/10 TeV)? x 10ab™! [3]. Variations around the reference values are
encouraged, aiming at an assessment of the required luminosity of the project based on physics
performances. Recently, the physics potentials of several future collider options have been studied
systematically [4]|, which provide reference points for comparison for our studies.


https://indico.cern.ch/event/944012/contributions/3989516/attachments/2091456/3518021/Physics_SnowMass_LoI.pdf
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The case for direct searches

EW pair-produced particles up to kinematical threshold
Striking for 10+TeV

events
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The case for direct searches

EW pair-produced particles up to kinematical threshold

Striking for 10+TeV
Particularly effective for VBF-produced BSM

10-1

[Buttazzo, Redigolo, Sala, Tesi, 2018]
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The case for direct searches

EW pair-produced particles up to kinematical threshold

Striking for 10+TeV
Particularly effective for VBF-produced BSM

Need studies for compressed/invisible/difficult decays

WIMP DM:
—-In Mono-X [2009.11287 + Buttazzo, Franceschini et. al. in progress]
disappearing tracks [2009.11287 + Meloni, Zurita et. al. in progress|
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High rate indirect probes

Large single-Higgs VBF rate

Precision on Higgs couplings driven by systematics. Could be 1%eo
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https://arxiv.org/pdf/2012.02769.pdf

High rate indirect probes

Large single-Higgs VBF rate
Precision on Higgs couplings driven by systematics. Could be 1%eo
Rare/Exotic Higgs decay opportunities ?
_ess Higgses than FCC-hh, but much more than FCC-ee.
Physics backgrounds are ee-like, what about BIB?
N—upy, h— Ty, for determination of anomalous g-2 [2012.02769]
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High rate indirect probes

Large single-Higgs VBF rate
Precision on Higgs couplings driven by systematics. Could be 1%eo
Rare/Exotic Higgs decay opportunities ?

Large double-Higgs VBF rate

[2008.12204; 2005.10289; Buttazzo, Franceschini, AW, to appear]
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High rate indirect probes

Large single-Higgs VBF rate
Precision on Higgs couplings driven by systematics. Could be 1%eo
Rare/Exotic Higgs decay opportunities ?

Large double-Higgs VBF rate

[2008.12204; 2005.10289; Buttazzo, Franceschini, AW, to appear]
Higgs 3-linear: ki =106(5%, 3.5%,1.6%) for E = (10, 14, 30) TeV

4 )

Sensitivity Projections based on:
4+ Both Higgs — bb
4+ Dominant backgrounds taken into account
4+ Jet energy resolution at 10% [CLIC-like]
4+ CLIC tight b-tagging working point
4+ Optimisation of number of b-tags and of

reconstructed Higgs mass cut
\* Result in perfect agreement with CLIC fullsim J
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High rate indirect probes

Large single-Higgs VBF rate
Precision on Higgs couplings driven by systematics. Could be 1%eo
Rare/Exotic Higgs decay opportunities ?

Large double-Higgs VBF rate

[2008.12204; 2005.10289; Buttazzo, Franceschini, AW, to appear]
Higgs 3-linear: ki =106(5%, 3.5%,1.6%) for E = (10, 14, 30) TeV
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High rate indirect probes

Large single-Higgs VBF rate
Precision on Higgs couplings driven by systematics. Could be 1%eo
Rare/Exotic Higgs decay opportunities ?

Large double-Higgs VBF rate

[2008.12204; 2005.10289; Buttazzo, Franceschini, AW, to appear]
Higgs 3-linear: ki =106(5%, 3.5%,1.6%) for E = (10, 14, 30) TeV
FCC reach is from 3.5 to 8.1%, depending on systematics assumptions
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High rate indirect probes

Large single-Higgs VBF rate
Precision on Higgs couplings driven by systematics. Could be 1%eo
Rare/Exotic Higgs decay opportunities ?

Large double-Higgs VBF rate

[2008.12204; 2005.10289; Buttazzo, Franceschini, AW, to appear]
Higgs 3-linear: ki =106(5%, 3.5%,1.6%) for E = (10, 14, 30) TeV
FCC reach is from 3.5 to 8.1%, depending on systematics assumptions
Composite Higgs & € =16 (2.5%0, 1.2%0, 0.3%o) for E = ( 10, 14, 30) TeV
From no-so-accurate measurements in high mass tail [0, energy growth]
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High rate indirect probes

Large single-Higgs VBF rate
Precision on Higgs couplings driven by systematics. Could be 1%eo
Rare/Exotic Higgs decay opportunities ?

Large double-Higgs VBF rate

[2008.12204; 2005.10289; Buttazzo, Franceschini, AW, to appear]
Higgs 3-linear: ki =106(5%, 3.5%,1.6%) for E = (10, 14, 30) TeV
FCC reach is from 3.5 to 8.1%, depending on systematics assumptions
Composite Higgs & € =16 (2.5%0, 1.2%0, 0.3%o) for E = ( 10, 14, 30) TeV

From no-so-accurate measurements in high mass tail [0, energy growth]
FCC-all reach, from accurate coupling measurements, is 1.8%o
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High energy probes

[Buttazzo, Franceschini, AW, to appear]

As simple as this:
[say, Aggy = 100 TeV]

Ac(E) E?

X0
osm(E) Agsm
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High energy probes

[Buttazzo, Franceschini, AW, to appear]

As simple as this:

—6 _ .
Aot 2 rsay, ABSMiIOO TeV) 107" at EW [FCC-ee] energies
m I
2 ‘
osm(E) Agsm 102 at muon collider energies

22



High energy probes

[Buttazzo, Franceschini, AW, to appear]

As simple as this: )
Aot 2 rsay, ABSMiIOO TeV) 107" at EW [FCC-ee] energies
~ p— 4‘
2
osm(E) Agsm 102 at muon collider energies

High-Energy probes are effective at HL-LHC, FCC-hh, CLIC
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High energy probes

[Buttazzo, Franceschini, AW, to appear]

As simple as this:

_6 |
Ac(E) F2 [53% Apgy = 100TeV) 107° at EW [FCC-ee] energies

X 2
GSM(E ) ABSM

102 at muon collider energies

High-Energy probes are effective at HL-LHC, FCC-hh, CLIC
But they are much more effective at the muon collider!
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Probing Higgs compositeness

“Standard” Future Colliders
Composite Higgs, 20

+

[Chen, Glioti, Ricci, Rattazzi, AW, in progress]
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Probing Higgs compositeness

[Chen, Glioti, Ricci, Rattazzi, AW, in progress]

“Standard” Future Colliders Muon Colllder
Composite Higgs, 20 0 Composite Higgs, 2
1] 3=y — 10T I LML
' El |3 < . .
st = N ] ' st 10 TeV |
| of 13 | )
ol . ol 0 hZ only _-
-. 8+ - hh mass—tail -
| : 1 Di—fermions |
al 1 4t 1
: European Sltrateg» : . :
010 20 30 40 0 10 20 30 40 50 60 70

20



Probing Higgs compositeness

[Chen, Glioti, Ricci, Rattazzi, AW, in progress]

“Standard” Future Colliders Muon Colllder
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Probing Higgs compositeness

[Chen, Glioti, Ricci, Rattazzi, AW, in progress]
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Even Simpler: Minimal Z’s

[Chen, Glioti, Ricci, Rattazzi, AW, in progress]

“Standard” Future Colliders Muon Collider
Y -Universal Z , 20 Universal Z', 20
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Outlook

Why working on muon colliders?

* |t is Important: we might end up outlining a new possible direction for
the continuation of the High Energy Physics journey

* |t is Fun: novel BSM possibilities wait to be explored, as well as novel
QFT challenges for predictions
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Outlook

Why working on muon colliders?

* |t is Important: we might end up outlining a new possible direction for
the continuation of the High Energy Physics journey

* |t is Fun: novel BSM possibilities wait to be explored, as well as novel
QFT challenges for predictions

Goals of the Physics Potential group:
* Collect as many reach plots as possible; make them as realistic as possible
e Contribute and encourage work for Snowmass
* Inform Detector design of Physics needs, and get feedback
e Use the “target” y-coll DELPHES card
* Join us! Write me, if you want to contribute to our regular meetings
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Outlook

The Very High Energy Muon Collider is a Dream
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Outlook

The Very High Energy Muon Collider is a Dream

And, often, Dreams DO become Reality!
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Outlook

The Very High Energy Muon Collider is a Dream

And, often, Dreams DO become Reality!

Thank You !
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Backup

EW pair-produced particles up to kinematical threshold
Striking for 10+TeV
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Backup

EW pair-produced particles up to kinematical threshold
Striking for 10+TeV

Examples:
¥ = FCC reach

Comparison even more favourable for
EWK-only part. like Higgsino and Wino
(potential Dark Matter)

Reference Point:
14 TeV p-collider >> FCC@100 TeV
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